A vector is a quantity that has both magnitude and direction. Vectors are used everywhere in physics to describe displacement (such as " 37 meters northwest"), force (" 12 pounds down"), etc. We will use symbols like \vec{v} and \vec{w} represent vectors, and symbols like c represent ordinary numbers, which we call scalars.

Let's begin by describing two-dimensional vectors using the physical notion of displacement. Each vector \vec{v} is a pair $\left\langle v_{1}, v_{2}\right\rangle$ of numbers. This \vec{v} represents a displacement of v_{1} units in the x-direction and v_{2} units in the y-direction. The length (or magnitude) of \vec{v} is denoted $|\vec{v}|$. By the Pythagorean theorem, $|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}}$. For example, $\langle 3,4\rangle$ means "move 3 units to the right and 4 up". The total displacement is $\sqrt{3^{2}+4^{2}}=5$, in a vaguely up-right direction. Similarly, $\langle-2, \pi\rangle$ represents a displacement of " 2 left and π up".

There are two basic operations on vectors: addition and scalar multiplication. To add two vectors \vec{v} and \vec{w}, you simply add their components independently:

$$
\left\langle v_{1}, v_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle=\left\langle v_{1}+w_{1}, v_{2}+w_{2}\right\rangle .
$$

Obviously, adding $\langle 0,0\rangle$ to a vector doesn't change it; $\langle 0,0\rangle$ is the zero vector, $\overrightarrow{0}$. Now, to muliply a vector \vec{v} by a scalar c, you multiply c across the components of \vec{v} :

$$
c\left\langle v_{1}, v_{2}\right\rangle=\left\langle c v_{1}, c v_{2}\right\rangle
$$

For example, $1 \vec{v}=\vec{v}$ and $0 \vec{v}=\overrightarrow{0}$. The effect of scalar multiplication is to stretch \vec{v} by a factor of c. Vectors of length 1 are called unit vectors. If $\vec{v} \neq \overrightarrow{0}$, then $\vec{v} /|\vec{v}|$ is the unit vector pointing in the direction of \vec{v}. (When we write \vec{v} / c, we mean $(1 / c) \vec{v}$.) The negation $-\vec{v}=-1 \vec{v}$ is the vector with the same length as \vec{v}, but pointing in the opposite direction. Notice that $\vec{v}+-\vec{v}=\overrightarrow{0}$; we define vector subtraction by $\vec{v}-\vec{w}=\vec{v}+-\vec{w}$.

One might be tempted to define vector multiplication as $\left\langle v_{1}, v_{2}\right\rangle\left\langle w_{1}, w_{2}\right\rangle=\left\langle v_{1} w_{1}, v_{2} w_{2}\right\rangle$, but it turns out that this operation is neither useful nor interesting. What is useful is the dot product,

$$
\left\langle v_{1}, v_{2}\right\rangle \cdot\left\langle w_{1}, w_{2}\right\rangle=v_{1} w_{1}+v_{2} w_{2}
$$

Notice that the result is a scalar, not a vector! The dot product is important for several related reasons:

- The length of \vec{v} equals $\sqrt{\vec{v} \cdot \vec{v}}$. In other words, $|\vec{v}|^{2}=\vec{v} \cdot \vec{v}$.
- If θ is the angle between \vec{v} and \vec{w}, then $\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos (\theta)$. If $|\vec{v}|=|\vec{w}|=1$, then $\theta=\cos ^{-1}(\vec{v} \cdot \vec{w})$.
- $\vec{v} \cdot \vec{w}=0$ if and only if \vec{v} and \vec{w} are perpendicular (or one of them is zero).

All of this generalizes to higher dimensions. For any positive integer n, we define an n-dimensional vector \vec{v} to be an ordered n-tuple of numbers, $\left\langle v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\rangle$. The operations are

$$
\begin{aligned}
\vec{v}+\vec{w} & =\left\langle v_{1}, \ldots, v_{n}\right\rangle+\left\langle w_{1}, \ldots, w_{n}\right\rangle=\left\langle v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right\rangle, \\
c \vec{v} & =c\left\langle v_{1}, \ldots, v_{n}\right\rangle=\left\langle c v_{1}, \ldots, c v_{n}\right\rangle, \\
\vec{v} \cdot \vec{w} & =\left\langle v_{1}, \ldots, v_{n}\right\rangle \cdot\left\langle w_{1}, \ldots, w_{n}\right\rangle=v_{1} w_{1}+\ldots+v_{n} w_{n} .
\end{aligned}
$$

The zero vector is $\langle 0,0,0, \ldots, 0\rangle$. Vector addition is associative and commutative. Also, vectors enjoy

- Scalar Distributivity: $c(\vec{v}+\vec{w})=c \vec{v}+c \vec{w}$.
- Scalar Associativity: $(c \vec{v}) \cdot \vec{w}=c(\vec{v} \cdot \vec{w})$.
- Commutativity: $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$.
- Distributivity: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$.

Although n-dimensional space is hard to visualize for $n>3$, vectors make it easy to talk about. For example, the length of the vector \vec{v} is $\sqrt{\vec{v} \cdot \vec{v}}$, and the angle between two unit vectors \vec{v} and \vec{w} is $\cos ^{-1}(\vec{v} \cdot \vec{w})$.

A peculiar feature of three-dimensional vectors is the cross product, defined as

$$
\left\langle v_{1}, v_{2}, v_{3}\right\rangle \times\left\langle w_{1}, w_{2}, w_{3}\right\rangle=\left\langle v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right\rangle
$$

Notice that the result is a vector, not a scalar. Here are some of its properties.

- Scalar Associativity: $(c \vec{v}) \times \vec{w}=c(\vec{v} \times \vec{w})$.
- Anticommutativity: $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$.
- Distributivity: $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$.
- $\vec{v} \times \vec{w}$ is perpendicular to both \vec{v} and \vec{w}.
- If θ is the angle between \vec{v} and \vec{w}, then $|\vec{v} \times \vec{w}|=|\vec{v}||\vec{w}| \sin (\theta)$.
- $(\vec{u} \times \vec{v}) \cdot \vec{w}=\vec{u} \cdot(\vec{v} \times \vec{w})$.
- $\vec{u} \times(\vec{v} \times \vec{w})=(\vec{w} \times \vec{v}) \times \vec{u}=(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$.

